3.552 \(\int \frac{\sqrt{a+b x} \sqrt{c+d x}}{x^2} \, dx\)

Optimal. Leaf size=115 \[ -\frac{\sqrt{a+b x} \sqrt{c+d x}}{x}-\frac{(a d+b c) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{\sqrt{a} \sqrt{c}}+2 \sqrt{b} \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right ) \]

[Out]

-((Sqrt[a + b*x]*Sqrt[c + d*x])/x) - ((b*c + a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/(S
qrt[a]*Sqrt[c]) + 2*Sqrt[b]*Sqrt[d]*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])]

________________________________________________________________________________________

Rubi [A]  time = 0.0610892, antiderivative size = 115, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.318, Rules used = {97, 157, 63, 217, 206, 93, 208} \[ -\frac{\sqrt{a+b x} \sqrt{c+d x}}{x}-\frac{(a d+b c) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{\sqrt{a} \sqrt{c}}+2 \sqrt{b} \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + b*x]*Sqrt[c + d*x])/x^2,x]

[Out]

-((Sqrt[a + b*x]*Sqrt[c + d*x])/x) - ((b*c + a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/(S
qrt[a]*Sqrt[c]) + 2*Sqrt[b]*Sqrt[d]*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])]

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x} \sqrt{c+d x}}{x^2} \, dx &=-\frac{\sqrt{a+b x} \sqrt{c+d x}}{x}+\int \frac{\frac{1}{2} (b c+a d)+b d x}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx\\ &=-\frac{\sqrt{a+b x} \sqrt{c+d x}}{x}+(b d) \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx+\frac{1}{2} (b c+a d) \int \frac{1}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx\\ &=-\frac{\sqrt{a+b x} \sqrt{c+d x}}{x}+(2 d) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )+(b c+a d) \operatorname{Subst}\left (\int \frac{1}{-a+c x^2} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )\\ &=-\frac{\sqrt{a+b x} \sqrt{c+d x}}{x}-\frac{(b c+a d) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{\sqrt{a} \sqrt{c}}+(2 d) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )\\ &=-\frac{\sqrt{a+b x} \sqrt{c+d x}}{x}-\frac{(b c+a d) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{\sqrt{a} \sqrt{c}}+2 \sqrt{b} \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )\\ \end{align*}

Mathematica [A]  time = 0.825549, size = 150, normalized size = 1.3 \[ -\frac{\sqrt{a+b x} \sqrt{c+d x}}{x}+\frac{2 \sqrt{d} \sqrt{b c-a d} \sqrt{\frac{b (c+d x)}{b c-a d}} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b c-a d}}\right )}{\sqrt{c+d x}}-\frac{(a d+b c) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{\sqrt{a} \sqrt{c}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + b*x]*Sqrt[c + d*x])/x^2,x]

[Out]

-((Sqrt[a + b*x]*Sqrt[c + d*x])/x) + (2*Sqrt[d]*Sqrt[b*c - a*d]*Sqrt[(b*(c + d*x))/(b*c - a*d)]*ArcSinh[(Sqrt[
d]*Sqrt[a + b*x])/Sqrt[b*c - a*d]])/Sqrt[c + d*x] - ((b*c + a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt
[c + d*x])])/(Sqrt[a]*Sqrt[c])

________________________________________________________________________________________

Maple [B]  time = 0.013, size = 250, normalized size = 2.2 \begin{align*}{\frac{1}{2\,x}\sqrt{bx+a}\sqrt{dx+c} \left ( 2\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{d{x}^{2}b+adx+bcx+ac}\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ) xbd\sqrt{ac}-\ln \left ({\frac{1}{x} \left ( adx+bcx+2\,\sqrt{ac}\sqrt{d{x}^{2}b+adx+bcx+ac}+2\,ac \right ) } \right ) xad\sqrt{bd}-\ln \left ({\frac{1}{x} \left ( adx+bcx+2\,\sqrt{ac}\sqrt{d{x}^{2}b+adx+bcx+ac}+2\,ac \right ) } \right ) xbc\sqrt{bd}-2\,\sqrt{d{x}^{2}b+adx+bcx+ac}\sqrt{bd}\sqrt{ac} \right ){\frac{1}{\sqrt{d{x}^{2}b+adx+bcx+ac}}}{\frac{1}{\sqrt{bd}}}{\frac{1}{\sqrt{ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(1/2)*(d*x+c)^(1/2)/x^2,x)

[Out]

1/2*(b*x+a)^(1/2)*(d*x+c)^(1/2)*(2*ln(1/2*(2*b*d*x+2*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d
)^(1/2))*x*b*d*(a*c)^(1/2)-ln((a*d*x+b*c*x+2*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)+2*a*c)/x)*x*a*d*(b*d)
^(1/2)-ln((a*d*x+b*c*x+2*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)+2*a*c)/x)*x*b*c*(b*d)^(1/2)-2*(b*d*x^2+a*
d*x+b*c*x+a*c)^(1/2)*(b*d)^(1/2)*(a*c)^(1/2))/(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)/x/(b*d)^(1/2)/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)*(d*x+c)^(1/2)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 4.81407, size = 1976, normalized size = 17.18 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)*(d*x+c)^(1/2)/x^2,x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(b*d)*a*c*x*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*
sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x) + sqrt(a*c)*(b*c + a*d)*x*log((8*a^2*c^2 + (b^2*c^2 + 6
*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a*c + (b*c + a*d)*x)*sqrt(a*c)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(a*b*c^2 + a^2*c
*d)*x)/x^2) - 4*sqrt(b*x + a)*sqrt(d*x + c)*a*c)/(a*c*x), -1/4*(4*sqrt(-b*d)*a*c*x*arctan(1/2*(2*b*d*x + b*c +
 a*d)*sqrt(-b*d)*sqrt(b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)) - sqrt(a*c)*(b*c
 + a*d)*x*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a*c + (b*c + a*d)*x)*sqrt(a*c)*sqrt(b*x
+ a)*sqrt(d*x + c) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) + 4*sqrt(b*x + a)*sqrt(d*x + c)*a*c)/(a*c*x), 1/2*(sqrt(b*d
)*a*c*x*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sq
rt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x) + sqrt(-a*c)*(b*c + a*d)*x*arctan(1/2*(2*a*c + (b*c + a*d)*x)*sqrt(-a*c
)*sqrt(b*x + a)*sqrt(d*x + c)/(a*b*c*d*x^2 + a^2*c^2 + (a*b*c^2 + a^2*c*d)*x)) - 2*sqrt(b*x + a)*sqrt(d*x + c)
*a*c)/(a*c*x), -1/2*(2*sqrt(-b*d)*a*c*x*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(b*x + a)*sqrt(d*x + c
)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)) - sqrt(-a*c)*(b*c + a*d)*x*arctan(1/2*(2*a*c + (b*c + a*d)*
x)*sqrt(-a*c)*sqrt(b*x + a)*sqrt(d*x + c)/(a*b*c*d*x^2 + a^2*c^2 + (a*b*c^2 + a^2*c*d)*x)) + 2*sqrt(b*x + a)*s
qrt(d*x + c)*a*c)/(a*c*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b x} \sqrt{c + d x}}{x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(1/2)*(d*x+c)**(1/2)/x**2,x)

[Out]

Integral(sqrt(a + b*x)*sqrt(c + d*x)/x**2, x)

________________________________________________________________________________________

Giac [B]  time = 1.64637, size = 616, normalized size = 5.36 \begin{align*} -\frac{{\left (\sqrt{b d} b^{2} \log \left ({\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2}\right ) + \frac{{\left (\sqrt{b d} b^{4} c + \sqrt{b d} a b^{3} d\right )} \arctan \left (-\frac{b^{2} c + a b d -{\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2}}{2 \, \sqrt{-a b c d} b}\right )}{\sqrt{-a b c d} b} + \frac{2 \,{\left (\sqrt{b d} b^{6} c^{2} - 2 \, \sqrt{b d} a b^{5} c d + \sqrt{b d} a^{2} b^{4} d^{2} - \sqrt{b d}{\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2} b^{4} c - \sqrt{b d}{\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2} a b^{3} d\right )}}{b^{4} c^{2} - 2 \, a b^{3} c d + a^{2} b^{2} d^{2} - 2 \,{\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2} b^{2} c - 2 \,{\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2} a b d +{\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{4}}\right )}{\left | b \right |}}{b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)*(d*x+c)^(1/2)/x^2,x, algorithm="giac")

[Out]

-(sqrt(b*d)*b^2*log((sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2) + (sqrt(b*d)*b^4*c + sq
rt(b*d)*a*b^3*d)*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^
2)/(sqrt(-a*b*c*d)*b))/(sqrt(-a*b*c*d)*b) + 2*(sqrt(b*d)*b^6*c^2 - 2*sqrt(b*d)*a*b^5*c*d + sqrt(b*d)*a^2*b^4*d
^2 - sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*b^4*c - sqrt(b*d)*(sqrt(b*d)*
sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a*b^3*d)/(b^4*c^2 - 2*a*b^3*c*d + a^2*b^2*d^2 - 2*(sqrt
(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*b^2*c - 2*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c +
 (b*x + a)*b*d - a*b*d))^2*a*b*d + (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4))*abs(b)/
b^3